CS 188: Artificial Intelligence

Probability

Pieter Abbeel - UC Berkeley

Many slides adapted from Dan Klein.

Our Status in CS188

- We' re done with Part I Search and Planning!
- Part II: Probabilistic Reasoning
- Diagnosis
- Tracking objects
- Speech recognition
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!
- Part III: Machine Learning

Part II: Probabilistic Reasoning

- Probability
- Distributions over LARGE Numbers of Random Variables
- Representation
- Independence
- Inference
- Variable Elimination
- Sampling
- Hidden Markov Models

Probability

- Probability
- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Inference by Enumeration
- Product Rule, Chain Rule, Bayes’ Rule
- Independence
- You' ll need all this stuff A LOT for the next few weeks, so make sure you go over it now and know it inside out! The next few weeks we will learn how to make these work computationally efficiently for LARGE numbers of random variables.

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow

- 5+ away: green
- Sensors are noisy, but we know P(Color | Distance)

$P($ red $\mid 3)$	$P($ orange $\mid 3$)	$P($ yellow $\mid 3)$	$P($ green \| 3)
0.05	0.15	0.5	0.3

Uncertainty

- General situation:
- Evidence: Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Hidden variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables

- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $\mathrm{R}=$ Is it raining ?
- $D=$ How long will it take to drive to work?
- L = Where am I?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
- R in $\{$ true, false $\}$ (sometimes write as $\{+r, \neg r\}$)
- D in $[0, \infty)$
- L in possible locations, maybe $\{(0,0),(0,1), \ldots\}$

Probability Distributions

- Unobserved random variables have distributions

$P(T)$	
T	P
warm	0.5
cold	0.5

$P(W)$	
W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$
P(W=\text { rain })=0.1 \quad P(\text { rain })=0.1
$$

- Must have: $\forall x P(x) \geq 0$

$$
\sum_{x} P(x)=1
$$

Joint Distributions

- A joint distribution over a set of random variables: $X_{1}, X_{2}, \ldots X_{n}$ specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& \quad P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& \quad P\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
& \text { - Size of distribution if n variables with domain sizes d? } \\
& \text { - Must obey: } \quad P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0
\end{aligned} \quad
$$

$$
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1
$$

- For all but the smallest distributions, impractical to write out

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
- (Random) variables with domains Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- Normalized: sum to 1.0
- Ideally: only certain variables directly interact
- Constraint satisfaction probs:
- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

T	W	P
hot	sun	T
hot	rain	F
cold	sun	F
cold	rain	T

Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\left(x_{1} \ldots x_{n}\right) \in E} P\left(x_{1} \ldots x_{n}\right)
$$

- From a joint distribution, we can calculate the probability of any event

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P ($\mathrm{T}=$ hot)

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$P(T, W)$			$\begin{aligned} & P(t)=\sum_{s} P(t, s) \\ & P(s)=\sum_{t} P(t, s) \end{aligned}$	$P(T)$		
			T	P		
T	W	P		hot	0.5	
hot	sun	0.4		cold	0.5	
hot	rain	0.1				
cold	sun	0.2			W	P
cold	rain	0.3		sun	0.6	
				rain	0.4	

$$
\begin{equation*}
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \tag{12}
\end{equation*}
$$

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

- A trick to get a whole conditional distribution at once:
- Select the joint probabilities matching the evidence
- Normalize the selection (make it sum to one)
$P(T, W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T, r)$			$P(T \mid r)$					
Select								
T R P hot rain 0.1 cold rain 0.3					$	$	T	P
:---:	:---:							
normalize	0.25							
cold	0.75							

- Why does this work? Sum of selection is P (evidence)! ($\mathrm{P}(\mathrm{r})$, here)

$$
P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{1}, x_{2}\right)}{P\left(x_{2}\right)}=\frac{P\left(x_{1}, x_{2}\right)}{\sum_{x_{1}} P\left(x_{1}, x_{2}\right)}
$$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
- P (on time \mid no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- $\mathrm{P}($ on time \mid no accidents, 5 a.m. $)=0.95$
- $P($ on time \mid no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- P(sun)?
- $\mathrm{P}($ sun | winter)?
- $\mathrm{P}($ sun | winter, warm)?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- General case:
- Evidence variables: $E_{1} \ldots E_{k}=e_{1} \ldots e_{k}$
- Query* variable:
- Hidden variables: $H_{1} \ldots H_{r}$

- We want: $P\left(Q \mid e_{1} \ldots e_{k}\right)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} \underbrace{P\left(Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}\right)}_{X_{1}, X_{2}, \ldots X_{n}}
$$

- Finally, normalize the remaining entries to conditionalize
- Obvious problems:
- Worst-case time complexity $O\left(d^{n}\right)$
* Works fine with
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution multiple query variables, too

Inference by Enumeration Example 2: Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red

B: Bottom sensor is red
G: Ghost is in the top

- Queries:
$P(+g)=? ?$
$P(+g \mid+t)=? ?$
$P(+g \mid+t,-b)=? ?$
- Problem: joint distribution too large / complex

Joint Distribution

T	B	G	$\mathrm{P}(\mathrm{T}, \mathrm{B}, \mathrm{G})$
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(x \mid y)=\frac{P(x, y)}{P(y)} \quad \Longleftrightarrow P(x, y)=P(x \mid y) P(y)
$$

- Example:

$P(W)$		$P(D \mid W)$			\rangle	$P(D, W)$		
		D	W	P		D	W	P
R	P	wet	sun	0.1		wet	sun	0.08
sun	0.8	dry	sun	0.9		dry	sun	0.72
rain	0.2	wet	rain	0.7		wet	rain	0.14
		dry	rain	0.3		dry	rain	0.86

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

- Why is this always true?
- Can now build a joint distributions only specifying conditionals!
- Bayesian networks essentially apply the chain rule plus make 21 conditional independence assumptions.

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we get:

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?

- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:

$$
P(\text { Cause } \mid \text { Effect })=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

- Example:
- m is meningitis, s is stiff neck

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Ghostbusters, Revisited

- Let' s say we have two distributions:
- Prior distribution over ghost location: $\mathrm{P}(\mathrm{G})$
- Let's say this is uniform
- Sensor reading model: $P(R \mid G)$
- Given: we know what our sensors do
- $R=$ reading color measured at $(1,1)$
- E.g. $P(R=$ yellow $\mid G=(1,1))=0.1$
- We can calculate the posterior distribution $\mathrm{P}(\mathrm{G} \mid \mathrm{r})$ over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

Independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- Says their joint distribution factors into a product two simpler ones.
- Usually variables are not independent!
- Equivalent definition of independence:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write: $X \Perp Y$
- Independence is a simplifying modeling assumption
- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?
- Independence is like something from CSPs, what?

Example: Independence?

$P_{1}(T, W)$		
T	W	P
warm	sun	0.4
warm	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T)$

T	P
warm	0.5
cold	0.5

$P_{2}(T, W)$		
T	W	P
warm	sun	0.3
warm	rain	0.2
cold	sun	0.3
cold	rain	0.2

$P(W)$

W	P
sun	0.6
rain	0.4

Example: Independence

- N fair, independent coin flips:

c	$P\left(X_{1}\right)$			$P\left(X_{2}\right)$			
H	0.5						
T	0.5					H	0.5
:---:	:---	:---					
T	0.5						

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch | + toothache, + cavity $)=\mathrm{P}(+$ catch | + cavity $)$
- The same independence holds if I don't have a cavity:
- $\mathrm{P}(+$ catch | + toothache,$~ \neg$ cavity $)=\mathrm{P}(+$ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- $P($ Catch \mid Toothache, Cavity $)=P($ Catch \mid Cavity $)$
- Equivalent statements:
- $\mathrm{P}($ Toothache \mid Catch, Cavity $)=\mathrm{P}($ Toothache | Cavity $)$
- P (Toothache, Catch \mid Cavity) $=\mathrm{P}($ Toothache \mid Cavity $) \mathrm{P}($ Catch \mid Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$
\begin{array}{ll}
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) & X \Perp Y \mid Z \\
\forall x, y, z: P(x \mid z, y)=P(x \mid z) &
\end{array}
$$

- What about this domain:
- Traffic
- Umbrella
- Raining
- What about fire, smoke, alarm?

The Chain Rule Revisited

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$
P (Rain) P (Traffic|Rain) P (Umbrella|Rain, Traffic)
- With assumption of conditional independence:
$P($ Traffic, Rain, Umbrella $)=$
P (Rain) P (Traffic|Rain) P (Umbrella|Rain)
- Representation size: $1+2+4$ versus $1+2+2$
- Bayes' nets / graphical models are concerned with distributions with conditional independences

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
B : Bottom square is red
G: Ghost is in the top
- Givens:
$P(+g)=0.5$

$P(+t$	$+g)=0.8$
$P(+t$	$\neg g)=0.4$
$P(+b$	$+g)=0.4$
$P(+b$	$-g)=0.8$

$P(T, B, G)=P(G) P(T \mid G) P(B \mid G)$

T	B	G	$\mathrm{P}(\mathrm{T}, \mathrm{B}, \mathrm{G})$
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

